EE 213, Microscopic Nanocharacterization of Materials Lecture 5. W2016

Mike Isaacson, Baskin 237 Email: <u>msi@soe.ucsc.edu</u> Tele: 831-459-3190 Admin. Asst. Rachel Cordero: <u>rcordero@soe.ucsc.edu</u>, 831-459-2921 **Contrast of signals**

untrast detestable using BSE either for Z untrast or thulmenumbrait ASIDE/ ghandly define $(=\frac{S_1-S_2}{\frac{1}{2}(S_1+S_1)}=\frac{dvff}{AVG}$ A minimum con we detect their we usually say 3 > 15 assume point country house $I \in C > \frac{1}{S_{N}} \| = \frac{S}{N} \sim \sqrt{S}$ min untract defined as $\left(C_{min} = \frac{K}{(S/N)} \right)^{1/N} K between 1 and 5$ se Rox: VIII. Human ? Stethore, 1974 (in 1948) early days of TV

Auger Spectroscopy Nomenclature

Auger Electron Spectroscopy

Atomic Electron Binding Energies.

K. Siegbahn, et.al. (1967)."Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy. (Almqvist and Wiksells, Uppsala)

ъ

-																								-	(eV)
Г		I.s.	$2x_N$	20.4	20.0	3.8	39.8		3p x	Ma	× K	4i x	4*	47%	44 N	+4,	-		1.	Sex	lex	5			
_	_	ĸ	ι,	L.	L.	м,	м.		м.	м.	м,	м,	Na	N.	N,	Ν,	N.	,		0,	0.	0	. 0.		٥.
•		34				T						1							-				-		
1	16.	25	-			1						1							1						
•	4	55																	- 1						
1.	84	- 111				1.													- 1						
1 3	•	185			5	1						1							_ [
•	c	284			,	1						1				- Г			-	-					1
12	×	299			,	ł.												60 N	60			6.	4.	64.	1
	0	532	24		7	1						1				1		P.	P.			P.	P.,	P.	
1,	51	685	31		,	1										- 1	0.05					-	-		
10	-	84.7	6			Ι.											13 BJ				;				
Ľ.		1 0/2	65		31	1 !						1					HP.								
Ľ		340		••		. 1										- 1	ES AL	18							
1.						1										- 1	66 R.	25							
1.			140														17Fr	34			15				
14		2 022	729	145												- 1	88 No.	44			19				
15	al		770	79.7				:				1				- 1	10 TA	60	ø	,		a	2	2	
		3 292	329	247	24																			-	
1.9	<	3 644	377	257	29	1 1										h	-	the second s	-T	-	-			-	,
20	c.	4 834	438	354	34	1 .		24			5	1							1						
211	54	4 83	500	487	40	2 54		32			;								- 1						
22	n į	4 965	544	463	45	5 59		34			5	1													
23	۷I	5 665	628	\$20	51	3 64		38			2								1						
24	C+	5 983	695	584	\$7	5 70		43			2														
25		6 539	769	452	64	1 4		49			4								1						
26		7 114	8+4	723	2)		,	56			•								1						
27	C•	7 769	926	794	77	101		60			3														
24		• 333	1 005	112	#5	5 112		**			•														
2	-1	1 5/1	1 496	101	90	1 129		74			2														
			1 194	1 1 1 2	1 02			.,																	
5		11	1 413	1 749					100				,												
n		11 162	1 527	1 150	1 12		10		141																
3	84	12 654	1 654	1 426	1.0		144		167					2											
25	n.	13 01	1 782	1 596	1 10	257	100		187	78		, ,		:											
14	Ke l	14 326	1 921	1 727	1.67	5 200	223		214										1						
37	14	15 200	2 065	1 844	1 86	3 322	246		279	117		34	15		14										
34	8-	14 105	2 216	2 007	1 94	354	280		269	135	132	34		29											
39	۲İ	17 639	2 273	2 155	2 00	305	313		301	160	154	46		26		3									
10	20	17 994	2 532	2 307	2 22	a	345		331	183	1.80	52		29		,									
6	m	38 946	2 658	2 465	2 37	419	379		363	298	205	54		34		4									
12	N	29 000	2 364	2 625	2 52	8 545	410		353	230	227	62		35		2									
1)	Te	ZI 044	3 042	2 793	2 67	7 544	445		425	257	253	61		29	-	2									
"	N-	n m	3 224	2 967	2 83	585	493		46 I	284	279	75		43	· ·	2									
42	**	23 229	1 412	3 144	3 66	627	521		496	312	207			48		3									

Atomic Electron Binding Energies.

K. Siegbahn, et.al. (1967)."Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy. (Almqvist and Wiksells, Uppsala)

I.V.I

	1+N K	2+4 L,	2PM La	2PM	30 M	JPN Ma	39 N	MN M.	M _N M	4+ M	49×	49 M		44×		44 N	41 N		41 %	50%	Sex.		Sex.	Sex.		54
45 P.4	24 350	3 605	3 331	1 121	630			144	114										1.	0,	04	_	0.	0,		0.
47 Ag	23 514	3 806	3 524	3 351	117	60.7	571	171	167		11		-		1				° 3							
4104	26 711	4-013	3 727	3 536	770	651	617	411	40.1	164		67			:				- 1	L						
(9 In	27 940	4 238	3 938	3 730	826	702	664	451	443	122		77			16							:				
50 Sa	29 200	4 465	4 156	3 929	844	757	715	494	485	137		89			24				- 8							
51 56	30 491	4 499	4 381	4 132	944	812	766	\$37	528	152		59			32				- 9			;				
St Te	31 814	4 929	4 612	4 341	1 804	870	819	582	572	168		110			45					1 12		;				
531	33 170	5 188	4 852	4 557	1 072	931	875	631	620	185		123			54		- 73			14		3				
54 X.e	34 541	\$ 453	\$ 104	4 782	1 145	999	\$37	685	672	208		147			63					18		7				
SS C.	35 985	\$ 713	5 360	5 013	1 217	1 045	998	740	726	231	172		162	71		77				123	13		12			
14 Be	37 441	5 967	\$ 624	\$ 247	1 253	1 137	1 063	796	731	253	192		180	93		90				40	17		15			
57 6	28 925	6 267	\$ 891	5 483	1 362	1 205	1 124	849	832	271	206		192		99					33		15				
SICe	40 444	6 549	6 165	\$ 724	1 435	1 273	1 186	902	884	290	224		208		111			1		38		20				
SPE	41 991	6 835	6 441	\$ 965	1 \$11	1 338	1 243	951	991	305	237		218		114			2		38		23				
w Hu	43 569	7 126	6 772	6 204	1 576	1 403	1 296	1 000	978	316	244		225		118			1		38		22				
11Pm	45 185	7 428	7 013	6 460	1 650	1 472	1 357	1 452	1 917	331	255		232		121			4		38		22				
62 Sm	46 835	1 137	7 312	6 717	1 724	1 542	1 421	1 107	1 011	347	267		249		130			2		29		22				
1)E.	48 519	8 052	7 636	6 977	1 800	1 614	1 481	1 161	1 131	340	284		257		134			٠		32		22				
HG	50 239	8 376	7 931	7 243	1 881	1 649	1 544	1 218	1 144	376	289		271		н			٠		34		21				
an	51 996	8 708	8 252	7 \$15	1 944	1 768	1 612	1 276	1 242	398	311		286		148			3		60		26				
44 Dy	53 784	1 047	8 581	7 290	2 647	1 442	1 676	1 335	1 295	416	335		293		154			4		63		26				
67 11.0	55 618	8 395	8 919	8 071	2 128	1010101	1 741	1 291	1 351	436	343		304		141			4		51	1129	29				
64 Er	57 484	9 572	9 265		3 207	2 005	1 812	1 453	1 409	449	366		320	177		168		4		60		29				
49 Tm	59 390	10 116	9 418	8 648	2 307	2 090	1 885	1 \$15	1 468	472	384		331		180			\$		53		32				
10 15	61 332	10 488	9 978	8 943	2 297	2 172	1 949	1 576	1 527	417	386		343	197		184		6		53		23				
11.0	63 314	10 870	10 349	9 244	2 491	2 264	3 424	1 640	1 549	546	418		259	205		195		,		57		28			\$	
13100	65 351	11 272	10 720	9 561	2 601	2 365	2 108	1 716	1 642	\$38	437		380	224		214	19			65	34		31	2	7	
17.	67 417	11 680	11 134	9 661	2 708	1 469	2 194	1 793	1 725	544	465		405	242		230	27		25	71	45		32		6	
	69 575	12 099	11 542	30 205	2 820	2 575	2 281	1 672	1 850	595	492		426	259		246	32		34	1 11	47		37		*	
DR4	11 6/1	11 511	11 95/	10 535	2 932	2 682	2 367	1 949	1 143	6.25	518		445	274		264	a		45	63	46		35		4	
100	13	12 765	11 345	10 871	3 049	1 792	2 658	2 431	1 960	655	547		45.9	290		213	52		50	64	58		46		۰	
	76 111	13 419	12 824	11 215	3 174	2 909	2 551	2 116	2 034	690	\$77		495	312		295	63		60	96	63		51		•	
in	10 375	13 880	13 273	11 564	3 290	3 027	2 646	2 202	2 131	724	608		519	331		314	74		70	163			51		1	
	13 143	14 355	11 733	11 710	1 40	3 150	2 /43	2 21	2 200	759	644		348	352		334				100	"		54		2	
	16 634	15 147	11 000	11 /11	3 341	3 119	2 847	2 385	1 190	800	677		3/1	119		364	143			1.4			24		'	
	10 005	15 841	15 306	11 434	1 444	1 110	1 957	1 485	2 390		111		609	497		386	122			1	100					
		14 188	15 304	11 410	1 404	3 683	3 197	3 644	1 (1)		101		(11)	4.75	10		143		150	1						
AL De	93 105	14 935	16 344	11 114		3 454	1 101	1 214	2 4 40				344			400	143		174	1	132					**
14.1	\$5 234	12 493	16 285	14 214		4 004	3 174	2 934	2 200	1 4/2	831		745	532	-	673		310		1	140		115			
AL De	35 444	18 049	17 337	14 614	4 472	4 150	3 514	3 672	2 800	1 012	414		16.0	147		541		210		1	164		127			
N.F.	101 137	18 639	17 906	15 031	4 65.9	4 327	3 643	3 136	3 000	1 153	540			602		677		264		234	187		140		-	
NI Re	103 922	19 232	18 484	15 444	4 872	4 490	3 789	3 248	3 105	1 204	1 050		870	616		603		210		254	200		153		-	
13 44	106 755	19 840	19 663	15 871	5 002	4 454	3 909	3 370	3 215	1 264	1 085		90.0	475		639		310		272	215		147			
WT.	109 451	20 472	19 493	16 300	5 182	4 131	4 046	1 411	3 332	1 334	1 164		-	214		477	344		335	233	229		182	15		

Estimating Auger Electric Energies
1st apprix: EAS(
$$(2)$$
) = (En(a) - Eg(2)) - E₁(2)
1st apprix: Shell where e^{-1} shell of exited electric
1st insight a shell where e^{-1} is the shell of exited electric
1st insight approx. EAS((2)) = E_p(2) - $\frac{1}{2}$ [E_g(2) + E_g(2) + E_g(2) + E_g(2) + $\frac{1}{2}$ [E₁(2) + $\frac{1}{2}$ [E₁(2)] + E₁(2 +1)]
example: KL₂L₃ transition in Al ($2^{-1}3$)
shell Al($2^{-1}3$) S; ($2^{-1}H$)
E_H i5boeV i834eV
EL, i18eV iM4eV
EL₂ TreV i00eV
EL₃ TSeV M4eV
 E_{L_3} TSeV M4eV
 $= \frac{19}{2} apprix/E_{KL_2L_3}$ (AI) = 1560 - 7H - 73 = 1H13eV // mathematical
 $-\frac{19}{2} [E_{L_3}(18) + E_{L_3}(14)]$
 $= \frac{1560 - \frac{1}{2} [T4+100] - \frac{1}{2} [T5+14]}{-1581 e - \frac{1}{2} [T4+100] - \frac{1}{2} [T5+14]}$
 $= \frac{1381 eV}{4} = -actual E < 16 AB_2$.

From Seah and Dench, 1979. Surf. and Interface Anal.1.36

φ

Auger quantisation SA = na Ip XA(HR*) & (EW, Ep)Y[FAT] = NA[stuff]AIp where [strift] = 2 (HED) 6(EW, Ep) Y [(+ T] of measurements simultanein then Ip= IPB = Ip/ SB NB [stuff_B the basis of quantitations -

lut 4 MB

Using AES to Measure Film Thickness

After Tarng and Wehner. J.Appl.Phys.44 (1973).1534

Using AES to Measure Film Thickness (cont)

S

0

E(in eV)

_

Auger Quantitation. 1. $S(WXY) = [n\lambda I_p(HR^*)] \delta(E_{W,E_0}) \delta(WXY) [\Gamma_R^*]$ NJ Y We can do jectum quantitations in one of three ways. 1) using 15 principles - the formula above 2) using standards 3) using "Smustivity factors" In order to use (1), we need a good handle on all the terms above: the mean free path of the escaping Anger electroses, the backscattering invectors, the invations crus-sections, the Augus yield and the efficiency factor, F. for (2). we require the use of "known" standards, where the waywriting is however. For (3). we require measurements of Anyrsignals from a wide vanity, of kumin samples that are no normalized to one particulas Anger signal.

Augu Quantitations.2
Our quantitations equations before:

$$\frac{N_1}{N_2} = \frac{5_1}{5_2} \frac{K_2}{K_1} \text{ or } S_1 = N_1 K_1, S_2 = N_2 K_2$$
where $K_1 = [\lambda I_p(1+R^*)], \sigma_1 (E_W, E_0) \mathcal{S}_1 [F_R^* T],$
We will include the 1¹⁵ principles calculations lasts
since that is the case where we need to know all
of the factors reasonably well.
(ASE 2. The method of Standards

$$\frac{S_R}{Sapare} = \frac{N_B K_B}{N_B pare K_B pare} \quad \text{where } n = \frac{*}{r}/rolume$$

Auger Quantitations. 3. Kase 2. unit > To the extent that the only factus that might be different between KB and KA pure are (1+2*),) and [FET] and of those factors aren't much different, THEN SA/SAPUR = NA groth approx. then NA = NAPHE SA SEDME NB NB PHE SAPHE SB - MA = [NAPAR SAPUR SA Better approximation." accounting that $\lambda_A \cong \lambda_{pme}$, not so unreasonable them AND that $[T_A^* T]$ are the same (or since the detaitor is twing at the same energy Auger electrons and me can prepare samples with somelax to propaphy. $\frac{n_{B}}{n_{B}} = \left[\frac{n_{B}p_{M}}{n_{B}p_{M}}\right] \left[\frac{s_{B}p_{M}}{s_{B}p_{M}}\right] \left[\frac{s_{B}}{s_{B}}\right] \left[\frac{(1+R^{2})_{A}p_{M}}{(1+R^{2})_{B}p_{M}}\right] \left[\frac{(1+R^{2})_{B}}{(1+R^{2})_{B}}\right]$ pure samples

E(in eV)

_

Auge Quantitations 5.

$$\begin{aligned}
\text{Case 2, cont} > \text{ inithed of iterateds.} \\
\text{Set Sputtis dynosited Ni - Pt alloy...} \\
\text{Zni = 28, Zpt = 78 so R* unactions is needed.} \\
\\
\text{Thispans = Cripped Apt A = atomis weight } \\
\text{The prove Petpow Anie} \\
\\
\text{The prove = 1.37} \\
\\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives is.} \\
\text{So INT gives$$

Augr Quantitation.6
We canget the (HRP) from the courses by Shimizes
(which are combinations of measurements and
MC calendations / simulations)

$$(112)$$
 Ni in Ni = 1.70
 (112) Ni in Ni = 1.70
 (112) Ni in Ni = 1.70
 (112) Ni in Pt = 2.10
 (112) Pt in Pt = 1.83
 (112) Pt in Pt = 1.83
 (112) Pt in Pt = 1.83
 (112) Ni in NiPt \cong (0.01)(1.70) + (.33)(2.10) = 1.86
 (112) Pt in Ni Pt \cong (0.30)(1.83) + (0.61)(1.51) = 1.63
 (112) Pt in Ni Pt \cong (0.30)(1.83) + (0.61)(1.51) = 1.63
 (112) Pt in NiPt \cong (0.30)(1.83) + (0.61)(1.51) = 1.63
 (112) Pt in NiPt \cong (0.30)(1.83) + (0.61)(1.51) = 1.63
 (112) Pt in NiPt \cong (0.30)(1.83) + (0.61)(1.51) = 1.63
 (112) Pt in NiPt \cong (0.30)(1.83) = 1.262
 (112) Pt in
Auger Quantitation.7 CASE 3. "relative scusstrity method similar to "stundards" method except that the 12 faiturs are determined by income # else and tabulated. ** care must be taken, since the unditions under which surrity farths were measured needs to be similar to mattime "identical "experimental inditions AND assumes the KAIK; are independent of miteral congressition. generally there "tables" are implied by manufacturer // from bufry: MA = SA KB => CA = 1+ NB = 1+ SB KB 50 there "" " faitus always appear as a ratio / : we measure the ratio for me itandard and everything else is referenced to that. . IC, KA LOX KB

Auger Quantitations. 7 scare 3, wrst > of we tabulate the ratio Ki/Kc frall elements, i then for any ratio, Ki = (Ki) (Ki/kc) the ratio of the Kj (Kc) (Ki/kc) "relative soundarty" factors in the tables (Davis et al being most undely med) Kx = Kx/KAy(351ev) rel. sometivity factor - relative to the silver MNN line at 351eV // C.E. Davis, et.al. Handborn of Auger Electrons Spectrosropy. (Physical Electronics Division, Perhan- Olmer Corp, 1978) similar me Grant and Briggs. Surface Analysis by Auger and X Pay Photoelecture Spectros way (2003). (I.M. Publishers. Chichester) Briggs and Sah, Practual Surface Brulysis ly Anger and X Ray Photrelectures Spectroswopy (1987) (John Woley, NY)

Auger Sensitivity Factors (relative to Ag (MNN), E = 321 eV

Auger Sensitivity Factors (relative to Ag (MNN), E = 321 eV

Auger Quantitation. 8 L Care 37 let's evaluate the last case, No Pt alboy. using relative sensitivity factors. $C_{Ni} = \frac{1}{|f(\frac{s_{pt}}{s_{wi}})/(\frac{k_{pt}}{k_{Ni}})} = \frac{1}{|f(\frac{1}{4.5})(\frac{k_{Ni}}{k_{pt}})}$ from Davis tables (curves)." Kni Kni (Kpt/Kng) = -225 = 3.91 = Kni Kpt Kng (Kpt/Kng) -0575 = 3.91 = Kni $1 (Ni = \frac{1}{1 + (\frac{1}{4} \in)(3.91)} = 0.54 = C_{Ni}$ we can extend this to multiclement systems . of n = # density of the it components the atomic innerstrations is then $C_{i} = \frac{N_{i}}{\sum N_{j}} = \frac{S_{i}/\kappa_{i}}{\sum (S_{i}/\kappa_{j})} = \frac{1}{\sum \left(\frac{S_{i}}{S_{i}}\right)\left(\frac{\kappa_{i}}{\kappa_{j}}\right)} = C_{i}$ NOTE: the relative snishtwity factors don't necessarily insect for the different backstatteng inertnus, also, they are dependent upon the mudent elation every.