EE213. Microscopic Nanocharacterization of Materials
Lecture 11. 2016

Atom Probe Microscopy

Xray and Photon Induced Microscopies

Homework #2: due Thursday, February 25



Deadlines

February 23. final paper topic

March 1, outline of final paper



EE 213. Winter 2016
Homework#2

Due: February 25, 2016
Maximum score = 100

EE213. Homework #2

1. (50pts) Consider the RBS (Rutherford Backscattering) spectrum shown below
taken with 2 Mev He+ ions incident normal to the sample. The sample is a thin Si
film deposited onto a higher Z substrate. Which peak is the Si and which is the
substrate. What is the substrate and how thick is the Si film? Assume the detector is
at a 20 degree angle with respect to the incident beam. The vertical scale is in
relative counts. Explain clearly your calculations.
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2. (50 pts.) Consider the electron backscattered detector shown below.

A. (25pts.) If the detector electronics allows one to detect signal differences of 1%,
can this detector detect a 0.1 atomic number difference at Z= 30? What other
information (if any) is needed to make this determination?

B. (25pts.) If we want this detector to be able to filter out all electrons below 1KeV
in energy, how thick would the Al metal coating on the detector surface have to be?
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Figure 3. (a) Schematic of the field electron emission microscope (FEEM). (b) FEEM image
of <110> tungsten.™ The twofold symmetry of this pattern is evident. (c) Schematic of the
field ion microcecona (FIMY (c) FIM imaae of <110= tiinacsten 17.12 The firet imane< of atome
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Fig. 1 Principle of field ion microscope (FIM).
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Fig. 1 Schematic illustration of a three dimensional atom probe (3DAP).
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Delay line detector
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HV fs laser pulse

3D Data Software
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Fig. 2 Schematic illustration of the laser assisted wide angle 3D atom probe at NIMS
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Invited Review Article: Atom probe tomography
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FIG. 3. (a) Scanning electron microscopy (SEM) image of an electropol-
ished specimen of an aluminum alloy. (b) Microtip specimen of a multilayer
Al/Si0,/Si structure fabricated by broad ion beam milling with a diamond
mask particle (Ref. 83). Cr was added to the basic structure as a control
layer to aid in finding the original layers.
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FIG. 6. (Color) Copper (green) and phosphorus (red) atom distribution in a
neutron-irradiated (fluence=1.3X 102 nm=? [E>1 MeV]) Fe0.1% Cu,
1.6% Mn, 1.6% Ni model pressure-vessel steel. A high number density of
~3-nm-diameter copper-<nriched precipitates and a phosphorus-decorated
dislocation are evident. The image on the right is a view along the disloca-
tion that is visible in the left image between the arrows. The arrow in the
right image points toward the precipitates that are visible on the dislocation.
Specimen is courtesy of Professor G. R. Odette, University of Califomia—

Santa Barbara.
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Figure 3. Geometry of kinetic-energy atom probe (Kelly, 2011), an atom probe with kinetic energy discrimination. The
detector would be placed close to the specimen to maximize solid angle and data collection rate. Mass resolving power
would be diminished by the short flight times, but peak discrimination would be enhanced significantly overall by the

augmentation of time-of-flight spectroscopy with kinetic energy information.

From T.F Kelly et.al. Microscopy and Microanalysis. 19.(2013),

662-664.
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FIG. 11. (Color) APT evalvation of segregation of Mg to an Al;Sc/Al
interface. (a) Image of a precipitate with an isoconcentration surface drawn
at 18 at. % Sc. (b) Composition profile derived from a proximity histogram
(Ref. 130) which shows the interfacial excesses of Al, Mg, and Sc measured
by APT.



Review References for Atom Probe Microscopy

T.F. Kelly, Microscopy and Microanalysis.17.
(2011).1-14.

T.F Kelly et.al. Microscopy and Microanalysis. 19.
(2013),662-664.

T.F. Kelly and M.K. Miller, Rev. Sci. Instruments.78
(2007).031101.

G. Smith and M. Ruhle. Advances In Analysis of
Materials.” European Whie Book on Fundamental
Research in Materials Science.(2000) Chap.7.5.
“3D Atom Probe”Review
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Inelastic mean free path
for electron scattering

10 102 3
ENERGY (in eV

From Seah and Dench, 1979. Surf. and Interface Anal.1.36



Light-matter interaction
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Low-energy phencmena:
Photoelectric effect

Mid-energy phenomena:
Compton scattering

High-energy phenomena:
Pair production
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A photon of wavelength /\ comes in from the left,
collides with a target at rest, and a new photon of
wavelength /\' emerges at an angle (.



From Brodie and Muray, The

4 Physics of Micro/Nanofabrication
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FIGURE 2.100. X-ray absorption coefficient as a function of X-ray energy.

2.9.1.2. Photoelectric Effect. In the photon energy range of 1-50 keV used in
microscience, the most important photon interaction is the photoelectric effect. The
transmitted X-ray intensity follows an exponential attenuation law expressed as
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20keV X-rays

20 keV electrons

i[e] 20
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Fig. 7. Background spectra obtained with the three different
excitation mechanisms used in X-ray analysis.
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Fig 1. The principal construction of the focusing lens

1 - X-ray source, 2 - lens, 3 - axis of lens, 4 - focal spot,
5 - captured X-rays, 6 - focused X-rays, 7 - X-ray receiver.

From Kumakhov et.al. Phys. Reports. 191(5).1990.pp.289-350.



100 S.B. Dabagov et al. / Nucl. Instr. and Meth. in Phys. Res. B 103 (1995) 99-105

(a)

r

Fig. 1. Scheme of the experiment on focal spot research (a) and close-up photo of the lens end showing the polycapillary structure of the
] {
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Schematic of a Fresnel zone
plate

Combination of a central stop and an order-sorting aperture (OSA) to isolate
the first-order focus

Area of rings are the same. Get interference between adjacent zones. Get
multiple order interference. For xrays, you need to have the “transparent”

regions be thin low Z material and the “opaque” regions be thick high Z material
to get reasonable efficiency.
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TYPES OF XRAY MICROSCOPES
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PROJECTION MILROSLOPY
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M=a/b
Ficure 1. Image formation by projection microradiography. Unsharpness in image
plane = Ms. First Fresnel fringe half-width in image plane = M (bA)3.

From. W.Nion. Proc.Q\;\(.._S‘foc-. Lovd. A (Rss).

S.C. Mayo, et.all. J. Mumwsiopy. 207. P2, (2002), 139 .
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Hand mit Ringen: print of Wilhelm -
Réntgen's first "medical’ x-ray, of his wife's
hand, taken on 22 December 1835 and
presented to Professor Ludwig Zehnder of
the Physik Institut, University of Freiburg, on
1 January 1886[41(°]



Xray Microscopy
Detected “species”
transmitted xrays

emitted xrays (fluorescence)
emitted electrons (photo electric effect)



Xray Photoemission Microscopy

Introduction

Photoelectric effect

Photoelectric effect e
Einstein, Nobel Prize 1921 X h“ ]
1777
Oxygen atom

Photoemission as an analytical tool

Kai Siegbahn, Nobel Prize 1981

O photoejected electron @ E = hf - Eb
max

From Smart, et.al. U Western Ontario
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£ Jamos sz, o7

Sth International Conference on X-Ray Microscopy IOP Publishing
Journal of Physics: Conference Series 186 (2009) 012001 doi:10.1088/1742-6596/186/1/012001

nitride windows [47].
« The first undulator beamline for microscopy at the NSLS [48].
« The establishment of the Center for X-ray Optics in Berkeley by David Attwood.
« Spectromicroscopy using XANES [31, 49, 50, 51, 52].

Most of these conference proceedings are relatively easy to come by [53, 54, 55, 56, 57, 58]. The
proceedings of the Sep. 20-24, 1993 conference held in Chernogolovka, Russia are a bit harder to
find [59], but the conference was memorable: the Congress of People’s Deputies was dissolved by
President Boris Yeltsin on Sep. 21, and rumors were rampant during the meeting. Most foreign
participants had returned home before street riots and battles took place over Sep. 28-Oct. 5.

1.6. The Age of Reason 1994-2002
~ X-ray microscopy started a major expansion during this period, with new instruments at new
light sources, such as ALS, APS, ESRF, ELETTRA, NSRRC, Spring-8, Aarhus, Ritsumeikan,
etc. Tomography [60, 61], cryo [62, 63], and cryo-tomography [64, 65, 66, 67] were demonstrated.
The range of applications grew rapidly, including soil science, geochemistry, polymer science, ~
magnetism, etc. Groups in Gottingen, Stockhoim, London, Tsukuba and elsewhere were
designing and building laboratory-based instruments. David Sayre’s oid dream of di raction
microscopy (recording the di raction pattern of a non-crystal, and reconstructing it) had its
first successful realization at the NSLS [68].

1.7. The Industrial Revolution 20032008

in the last five years X-ray microscopy has entered the mainstream. We are no longer working
with an esoteric, new, unproven technique. What brought about this change is the rapidly
growing list of successful and highly visible applications in environmental and soil science,
geo- and cosmo-chemistry, polymer science, biology, magnetism, energy research, materials and
surface science, among others. Without applications we are just a curiosity.

Figure 6. Growth in the x-ray
microscopy community. A) Num-
ber of attendees, articles with ab-
stracts, and abstracts only at the
modern series of x-ray microscopy
conferences. The number of ar- A. —

ticles at the 2008 meeting is not ol -
indicated in this figure. B) X- £30-
ray microscopy facilities at syn- gg
chrotron light sources worldwide. =15
The count is based on papers pre- ¥ ";
sented at each x-ray microscopy 0--
conference.
&
Ty
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Fig.26.

Pnotoionization cross-sections of the atomic levels as a
of atomic number at an excitation energy hv = 1.5 keV.
values apply not only to &% XK, (hv = 1587 eV) but appr¢
also to Mg Ka (hv = 1254 eV) (adapted from ref.52). Dashe
theoretical values, s0lic¢ lines: adjusted experimental valt



Other sources for X Ray Microscopy



Bibliography of Soft X-ray Microscopy - REFERENCES
Originally published as supplemental material for
H. Ade and A P. Hitchcock, NEXAFS microscopy and resonant scattering:
Composition and ovientation probed in real and reciprocal space, Polymer 49 (2008) 643-67

A.P. Hitchcock
File: XRM-bib-ref.doc Last changed: 03-Jan-2012 (aph)

CODE: YYYYABC orYYYYAB& where YYYY = vyear . A — first letter of last name of first author, B — first letter of last name of second author,
C — first letter of last name of third author; if more than 3 authors. replace C with &: if not unique. append a, b, c etc

CONFERENCE PROCEEDINGS

1% Int. Conf. X-ray Microscopy Géttingen, Germany 1983 G. Schmahl, and D. Rudolph (Eds)
X-ray microscopy (Springer, 1984)
2* Int. Conf. X-ray Microscopy Stony Brook, USA 1987 D. Sayre, M. Howells, J. Kirz. H. Rarback (Eds.)
X-Ray Microscopy II (Springer, 1988)
3™ Int. Conf. X-ray Microscopy London, UK 1990 A. Michette, G. R. Morrison, and C. J. Buckley (Eds.)
X-Ray Microscopy III (Springer, 1992)
4™ Int. Conf. X-ray Microscopy Chernogolovka, Russia 1993 V. V. Aristov, and A. I Erko (Eds.)
X-Ray Microscopy IV (Chernogolovka, Russia, 1994).
5" Int. Conf. X-ray Microscopy Wiirzburg, Germany 1996  J. Thieme. G. Schmahl, D. Rudolf, E. Umbach (Eds)
X-ray microscopy and spectromicroscopy (Springer, 1998)
6" Int. Conf X-ray Microscopy Berkeley, USA 1999 W. Meyer-Iise, T. Warwick, and D. Attwood (Eds.)
Am. Inst. Phys. Conf. Proc 507 (2000)
7% Int. Conf. X-ray Microscopy Grenoble, France 2002  J. Susini, D. Joteux, F. Polack (Eds)
J. de Physique IV Proceedings 104 (2003)
8" Int. Conf. X-ray Microscopy Himeji, Japan 2005 S. Aoki, Y. Kagoshima. Y. Suzuki (Eds)
IPAP Conference Series 7, Proc. 8th Int. Conf. on X-ray Microscopy
9% Int. Conf. X-ray Microscopy Zurich, Switzerland 2008 Christoph Quitmann, Franz Pfeiffer (eds)
J. Physics: Conference Series: Proc. 9th Int. Conf. on X-ray Microscopy Vol 186 (2009)
10® Int. Conf. X-ray Microscopy Chigaco, USA 2010 Ian McNulty, Catherine Eyberger, Barry Lai (eds)
Am. Inst. Phys. Conf. Proc. 1365 (2011)
11% Int. Conf. X-ray Microscopy Shanghai, China 2012 Ziyu Wu, Renzhong Tai (eds)



ESRF, Grenoble




Spatial Resolution (microns)

History of Photoelectron Microscopy
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® XPS with Synch. Radiation
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Magnetic Projection PESM (lab)
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1970 1980 1950 2000 2010

From S. Heun Tutorial, CNR-INFM, Trieste



Table Top Xray Microscopes

Oth International Conference on X-Ray Microscopy

Journal of Physics: Conference Series 186 (2009) 012010

ZrO/W(100)
Schottky emitter]

Gun chamber —1

: 10 Pa
EDS port
X-ray
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TFE gun

.« Condenser lens

.  Anode

Electron beam

e

<« Objective lens

—Aperture

zﬁ\ﬁ@:tion electron detector

Target / X-ray window

Figure 1. Schematics of nano-focus X-ray tube “TX-510".
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(b)
Figure 4. X-ray images of X-ray resolution test chart
taken by using TUX-5000FS. A low magnification image
(a). The minimum width of radial line and space of the
inner circle is 50nm in digital magnified image (b).
Accelerating voltage is 30kV and emission current from
TFE gun is 160pA. Target material is platinum of 0.6 pm

thick.
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Advanced product develcpment and innovative research greatly depends on effective imaging sclutions to
expose internal structures and allow researchers and engineers te develep and confirm models to describe
the properties and behavior of materials of interest. Key to effective imaging is the ability to use 2 succession
of increasing resolutions combined with smaller and smaller fields of view tc allow you tc 'zoom' into the
particular area of interest. Ideally you can start with scanning mode, using a large field of view up to
centimeters in size and resocluticn of tens of microns. You then move on to resclutions in the sub micron scale
with a field of view of a few millimeters, and further down to nancscale resolution with a field of view of
microns. In addition, as product and sample complexity increases, it becomes more and mere challenging to
fully understand the three dimensional intricacies of structures, so that 3D imaging modalities are required.
Alternative two dimensicnal imaging modalities such as TEM and FIB/SEM require complex precedures and
skills to reconstruct the 3D models and confirm three dimensional dependencies between the varicus internal
structures of the sample.

Py

VersaXRM-500 MicroXCT-200 MicraXCT-400 UkraXRM-L200

Xradia offers X-ray microscopes (XRM), advanced imaging solutions using X-ray computed tomography (CT)
scanning technology combined with proprietary X-ray optics. Xradia's multi-lengthscale solution combines the
VersaXRM family and UltraXRM lab platferms te provide the only 3D non-destructive imaging solution from
millimeter to nanometer length scale. The V RM utilizes patented X-ray detectors and an optical
microscope style turret with magnifying objective detectors for easy zooming. You can go from a scanning
mode and about 30 micron resolution all the way down to sub-micron pixel resolution with about 2 mm field of
view. The UltraXRM nanoscale X-ray microscope is the only commercially available X-ray microscope that
utilizes synchrotron based X-ray optics and provides true sub-100 nm 3D volumetric resclution.

The MicreXCT platform includes the following systems —
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(@) p-spot illumination (b) homogeneous i!lumination
+ electron imaging system
x-ray
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seractor
(2) e NP o R S —
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Fig. 5. Schematic illustration of used source sample-detector geometries in PEM: (2) p-spot illumination
in scanning instruments, (b) electron imaging systems. The present review focuses on systems using ge-
ometry 1. Geometries 2 and 3 are listed for sake of completeness (see text).
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The aberration corrected microscope PEEM-3 employs a curved electron mirror to counter the lowest order aberrations of
the electron lenses and the accelerating field.A dipole separator magnet directs the electron beam into the mirror and back
into the projector optics of the microscope. Four mirror electrodes allows us to fine-tune spherical and chromatic aberration
correction and magnification (-1) of the mirror. Backfocal plane apertures between 10 ym and 50 xm can be chosen to
optimize resolution and transmission. A three-lens projector optics produce a total optical magnification between 300 and

10000. Electrostatic and magnetic deflectors are used for beam-stearing and shaping.



Schematic of a Fresnel zone
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20keV X-rays

20 keV electrons
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Fig. 7. Background spectra obtained with the three different
excitation mechanisms used in X-ray analysis.




Conventional x-ray microscope XM-1 at the ALS
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Fig. 2. Schematic of the scanning X-ray microscope.

At ESRF (European Synchrotron
Radiation Facility, Grenoble)
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Transmission x-ray micrographs
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Fig. 13. Transmission images of a simple, binary PS and PMMA thin film blend. annealed on a SiO, substrate such that large droplets have formed. Reference
spectra of PS and PMMA are shown, along with the images that correspond to the characteristic energies as indicated. The complete morphology cannot be inferred

from an individual image.



— v .

.

(<)

Fig. 5. Fluorescence yield images of a Pinnashell taken
at two energies, 2473 keV (a) and 2.452 keV (b), specific
of the sulfur in sulfate or amino acid forms respectively.
The pixel size is 0.5 % 0.5 pm?*. An electron microscope
image is given for comparison (c).



19.5 nm half-period

15.1 nm half period
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Figure 4 | Soft X-ray images of 15.1nm and 19.5 nm half-period test objects,
as formed with zone plates having outer zone widths of 25 nm and
15nm. The test objects consist of Cr/Si multilayers, with 15.1 nm and
19.5nm half-periods, respectively. Significant improvements are noted
between the images obtained with the new 15 nm zoneplate, as compared to
carlier results obtained with the 25 nm zone plate. This is particularly
evident for the 15 nm half-period images, for which the earlier result shows
no modulation, whereas the image obtained with the 15 nm zone plate shows
excellent modulation. a, Image of 19.5 nm half-period test object obtained
previously with a 25nm zone plate. b, Image of 19.5 nm half-period object
with the 15 nm zone plate. ¢, Image of 15.1 nm half-period with the previous
25nm zone plate.d, Imageof 15.1 nm half-period with the 15nm zone plate.
Images aand ¢ were obtained at a wavdength of 2.07 nm (600 ¢V photon
energy); b and d were obtained at a wavelength of 1.52nm (815 V). The
equivalent object plane pixel size for images a and ¢ is 4.3 nm; the size for b
andd is L6nm.
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